

IP Addressing & Subnetting

IP Addressing
 Subnetting
 CIDR
 VLSM

IP Addresses

- An IP address is an address used to uniquely identify a device on an IP network.
- The address is made up of 32 binary bits which can be divisible into a network portion and host portion with the help of a subnet mask.
- 32 binary bits are broken into four octets (1 octet = 8 bits)
- Dotted decimal format (for example, 172.16.81.100)

IP Address Classes

- Class A: The first octet is the network portion. Octets 2, 3, and 4 are for subnets/hosts
- Class B: The first two octets are the network portion. Octets 3 and 4 are for subnets/hosts
- Class C: The first three octets are the network portion. Octet 4 is for subnets/hosts

Network Masks

- Distinguishes which portion of the address identifies the network and which portion of the address identifies the node.
- Default masks:
 - Class A: 255.0.0.0Class B: 255.255.0.0
 - ➤Class C: 255.255.255.0

Private Address Range

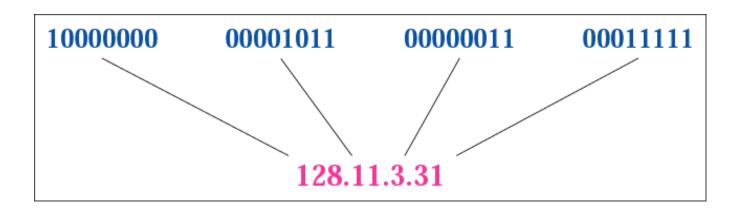
Address Class	Reserved Address Space
Class A	10.0.0.0 - 10.255.255.255
Class B	172.16.0.0 - 172.31.255.255
Class C	192.168.0.0 - 192.168.255.255

Public

- Required by devices and hosts that connect directly to the Internet
- Must be globally unique
- Routable on the Internet
- Must be assigned by IANA/RIR

Private

- Not routable on the Internet
 - 10.0.0.0/8
 - 172.16.0.0/12
 - 192.168.0.0./16
- Can be assigned locally by an organization
- Must be translated to access the Internet


Binary Notation

$01110101 \quad 10010101 \quad 00011101 \quad 11101010 \\$

Figure 4-1

Dotted-decimal notation

Change the following IP address from binary notation to dotted-decimal notation. 10000001 00001011 00001011 11101111

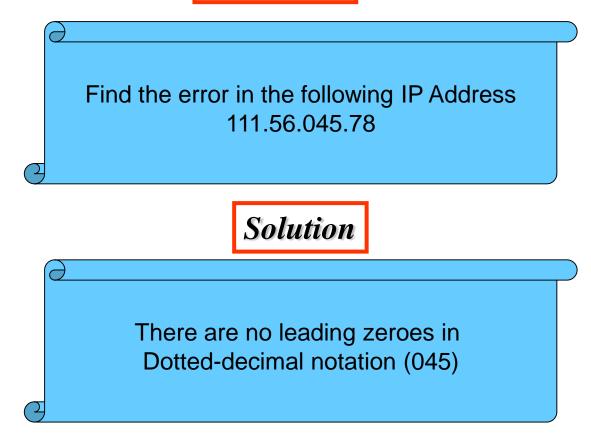
Change the following IP address from binary notation to dotted-decimal notation. 10000001 00001011 00001011 11101111

Solution

129.11.11.239

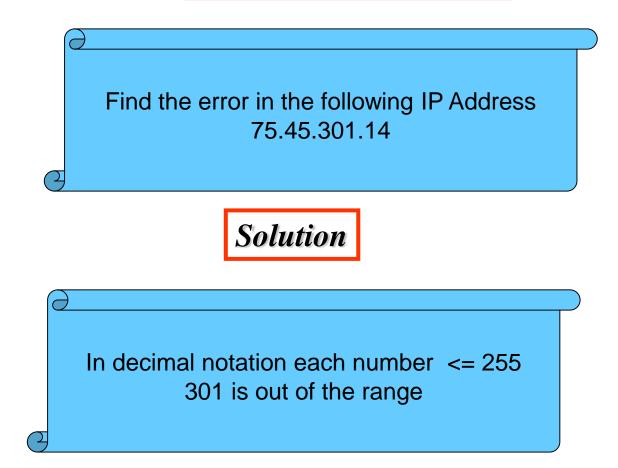
Change the following IP address from dotted-decimal notation to binary notation:

111.56.45.78


Change the following IP address from dotted-decimal notation to binary notation:

111.56.45.78

Solution


01101111 00111000 00101101 01001110

Example 3 (continued)

Subnetting

- Subnetting is the process of dividing an IP space into manageable segments of same sizes
- Creates multiple logical networks that exist within a single Class A, B, or C network.
- If you do not subnet, you will only be able to use one network from your Class A, B, or C network, which is unrealistic
- Each data link on a network must have a unique network ID, with every node on that link being a member of the same network

Benefits of Subnetting

- 1) Reduced network traffic
- 2) Optimized network performance
- 3) Simplified management
- 4) Facilitated spanning of large geographical distances

- Determine the number of required network IDs:
 - One for each subnet
 - One for each wide area network connection
- Determine the number of required host IDs per subnet:
 - One for each TCP/IP host
 - One for each router interface
- Based on the above requirements, create the following:
 - One subnet mask for your entire network
 - > A unique subnet ID for each physical segment
 - A range of host IDs for each subnet

Subnetting a Class A/B/C Address

- How many subnets does the chosen subnet mask produce?
- How many valid hosts per subnet are available?
- What are the valid subnets?
- What's the broadcast address of each subnet?
- What are the valid hosts in each subnet?

Practice Example #1C: 255.255.255.128 (/25) Network 192.168.1.0

- How many subnets? Since 128 is 1 bit on (1000000), the answer would be 2¹=
 2.
- How many hosts per subnet? We have 7 host bits off (10000000), so the equation would be 2⁷- 2 = 126 hosts.
- What are the valid subnets? 256 128 = 128. Remember, we'll start at zero and count in our block size, so our subnets are 0, 128.
- What's the broadcast address for each subnet? The number right before the value of the next subnet is all host bits turned on and equals the broadcast address. For the zero subnet, the next subnet is 128, so the broadcast of the 0 subnet is 127.
- What are the valid hosts? These are the numbers between the subnet and broadcast address

• Example **1**

- **192.168.1.0/25** 255.255.255.128
- 2¹= 2 Networks
- 2⁷– 2 Hosts

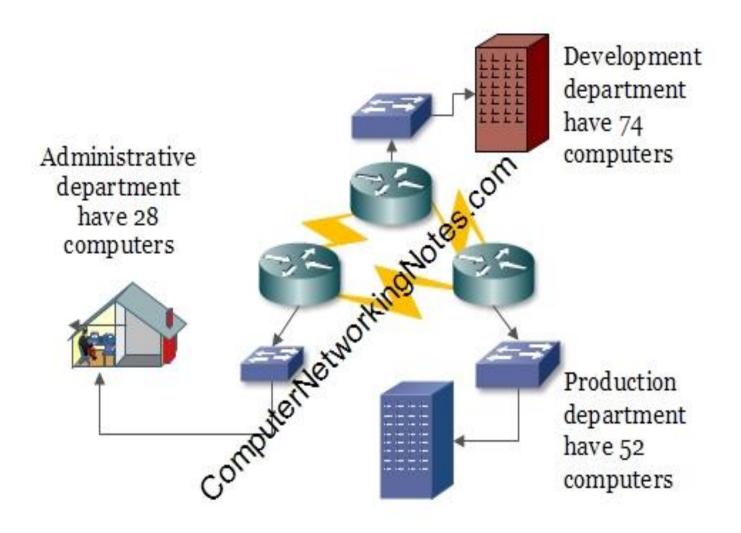
Subnet	Subnet 1	Subnet 2	
Network ID	192.168.1.0	192.168.1.128	
First host address	192.168.1.1	192.168.1.129	
Last host address	192.168.1.126	192.168.1.254	
Broadcast ID	192.168.1.127	192.168.1.255	

Example 2 192.168.1.0/26 255.255.255.192 2²= 4 Networks 2⁶- 2 Hosts

Subnet	Subnet 1	Subnet 2	Subnet 3	Subnet 4
Network ID	0	64	128	192
First address	1	65	129	193
Last address	62	126	190	254
Broadcast ID	63	127	191	255

Example **3** 192.168.1.0/27 subnet mask ? Practice Exercise

VLSM


- VLSM is a process of dividing an IP space into the subnets of different sizes without wasting IP addresses. When we perform subnetting, all subnets have the same number of hosts, this is known as FLSM (Fixed length subnet mask).
- •
- In FLSM all subnets use same subnet mask, this lead to inefficiencies. In real life scenario, some subnets may require large number of host addresses while other may require only few addresses.

Assume that you are a network administrator at BrainTechnologis. Company have three departments connected with wan links.

- Development department have 74 computers.
- Production department have 52 computers.
- Administrative department have 28 computers.
- All departments are connected with each other via wan link.
- Each wan link requires two IP addresses.

- First choice with a example class B address space
- 172.168.1.0/23
- Subnetting of this address space would give us 128 subnets and 512 hosts in each subnet. Our network requires only 6 subnets and 160 addresses.
- Every IP address add more dollars in company bill. You would have to pay for 65356 addresses while you need only 160 addresses. Would you consider this address space for company?

- Second choice with two example class C address spaces
- 192.168.1.0/25
- 192.168.2.0/26
- Subnetting of first address 192.168.1.0/25 would give us 2 subnets and 128 hosts in each subnet.
- Subnetting of second address 192.168.2.0/26 would give us 4 subnets and 64 hosts in each subnet.
- Collectively we are getting 6 subnets and 512 hosts from these two address spaces. We are still wasting more than 300 IP address, and we would have to purchase two address spaces.

Variable Length Subnet Mask

- Variable Length Subnet Mask (VLSM) extends classic subnetting.
- VLSM is a process of breaking down subnets into the smaller subnets, according to the need of individual networks. In above example company have requirement of 6 subnets and 160 host addresses. With VSLM you can fulfill this requirement with single class C address space.

VLSM Subnetting

• In VLSM Subnetting, we do subnetting of subnets according the network requirement.

Steps for VLSM Subnetting

- Find the largest segment. Segment which need largest number of hosts address.
- Do subnetting to fulfill the requirement of largest segment.
- Assign the appropriate subnet mask for the largest segment.
- For second largest segments, take one of these newly created subnets and apply a different, more appropriate, subnet mask to it.
- Assign the appropriate subnet mask for the second largest segment.
- Repeat this process until the last network.

VLSM Example

- Now you know the steps of VLSM Subnetting. Let's understand it with above example. Our company requires 6 subnets and 160 hosts.
- **Step 1 :-** Oder all segments according the hosts requirement (Largest to smallest).

Subnet	Segment	Hosts
1	Development	74
2	Production	52
3	Administrative	28
4	Wan link 1	2
5	Wan link 2	2
6	Wan link 3	2

- Step 2 :- Do subnetting for largest segment. Our largest segment needs 74 host addresses. /25 provide us two subnets with 128 hosts in each subnet.
- 192.168.1.0/25

Subnet	Subnet 1	Subnet 2	
Network ID	192.168.1.0	192.168.1.128	
First host address	192.168.1.1	192.168.1.129	
Last host address	192.168.1.126	192.168.1.254	
Broadcast ID	192.168.1.127	192.168.1.255	

• Step 3 :- Assign subnet mask to the largest segment. As you can see in above table, subnet 1 fulfill our largest segment requirement. Assign it to our segment.

Segment	Development
Requirement	74
CIDR	/25
Subnet mask	255.255.255.128
Network ID	192.168.1.0
First hosts	192.168.1.1
Last hosts	192.168.1.126
Broadcast ID	192.168.1.127

- Step 4 :- Do subnetting for second largest segment from next available subnet. Next segment requires 52 host addresses. Subnetting of /25 has given us two subnets with 128 hosts in each, from that we have assigned first subnet to development segment. Second segment is available, we would do subnetting of this.
- /26 provide us 4 subnets with 64 hosts in each subnet

Subnet	Subnet 1	Subnet 2	Subnet 3	Subnet 4
Network ID	0	64	128	192
First address	1	65	129	193
Last address	62	126	190	254
Broadcast ID	63	127	191	255

• 192.168.1.0/26

 We cannot use subnet 1 and subnet 2 (address from 0 to 127) as they are already assigned to development department. We can assign subnet 3 to our production department.

Segment	Production
Requirement	52
CIDR	/26
Subnet mask	255.255.255.192
Network ID	192.168.1.128
First hosts	192.168.1.129
Last hosts	192.168.1.190
Broadcast ID	192.168.1.191

- Step 5 :- Our next segment requires 28 hosts. From above subnetting we have subnet 3 and subnet 4 available. Do subnetting for the requirement of 28 hosts.
- 192.168.1.0/27

Subnet	Sub 1	Sub 2	Sub 3	Sub 4	Sub 5	Sub 6	Sub 7	Sub 8
Net ID	0	32	64	96	128	160	192	224
First Host	1	33	65	95	129	161	193	225
LastHost	30	62	94	126	158	190	222	254
Broadcast ID	31	63	95	127	159	191	223	255

Subnets 1 to 6 [address from 0 to 191] are already occupied by previous segments. We can assign subnet 7 to this segment.

Segment	Administrative
Requirement	28
CIDR	/27
Subnet mask	255.255.255.224
Network ID	192.168.1.192
First hosts	192.168.1.193
Last hosts	192.168.1.222
Broadcast ID	192.168.1.223

- **Step 6 :-** Our last three segments require 2 hosts per subnet. Do subnetting for these.
- 192.168.1.0/30
- Valid subnets are:-
- 0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76,80,84,88,9
 2,96,100,104,108,112,116,120,124,128,132,136,140,144,148,152,156
 ,160,164,168,172,176,180,184,188,192,196,200,204,208,212,216,220
 ,224,228,232,236,240,244,248,252,256
- From these subnets, subnet 1 to subnet 56 (Address from 0 220) are already assigned to previous segments. We can use 224,228, and 232 for wan links.

WORKSHOPS AND CONFERENCE 23 - 28 October 2021

Subnet	Subnet 57	Subnet 58	Subnet 59
Network ID	224	228	232
First host	225	229	233
Last host	226	230	234
Broadcast ID	227	231	235

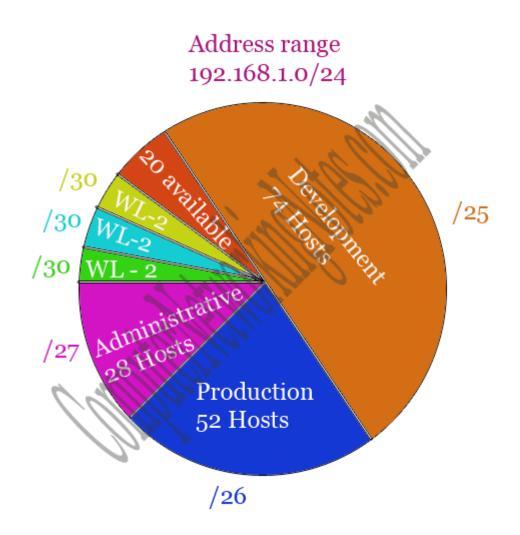
Assign these subnets to wan links.

Wan Link 1

Segments	Wan Link 1
Requirement	2
CIDR	/30
Subnet mask	255.255.255.252
Network ID	192.168.1.224
First hosts	192.168.1.225
Last hosts	192.168.1.226
Broadcast ID	192.168.1.227

Wan Link 2

Segments	Wan Link 2
Requirement	2
CIDR	/30
Subnet mask	255.255.255.252
Network ID	192.168.1.228
First hosts	192.168.1.229
Last hosts	192.168.1.230
Broadcast ID	192.168.1.231



Wan link 3

Segments	Wan Link 3
Requirement	2
CIDR	/30
Subnet mask	255.255.255.252
Network ID	192.168.1.232
First hosts	192.168.1.233
Last hosts	192.168.1.234
Broadcast ID	192.168.1.235

• We have assigned IP addresses to all segments, still we have 20 addresses available. This is the magic of VLSM.

CIDR

- Classless Interdomain Routing
- Improve address space utilization
- Routing scalability in the Internet
- For example, if an ISP owns network 172.16.0.0/16, then the ISP can offer 172.16.1.0/24, 172.16.2.0/24, and so on to customers. Yet, when advertising to other providers, the ISP only needs to advertise 172.16.0.0/16

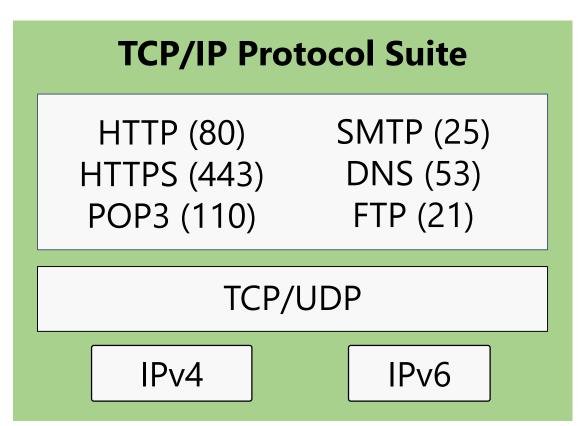
The TCP/IP Protocol Suite

	TCP/IP Protocol Suite		
Application		TP FTP NS POP3	SMTP SNMP
Transport		ТСР	UDP
Internet	ARP IPv	IGMP ICMP	IPv6
Network Interface	e Ethernet	Wi-Fi	Mobile broadband

Protocols in the TCP/IP Suite

OSI	TCP/IP	TCP/IP Protocol Suite	
Application Presentation Session	Application	HTTP DNS FTP POP3 SMTP SNMP	
Transport	Transport	TCP UDP	
Network	Internet	ARP IPv4 igmp IPv6	
Data Link Physical	Network Interface	Ethernet Wi-Fi Mobile broadband	

TCP/IP Applications


Some common application layer protocols:

- HTTP
- HTTPS
- FTP
- RDP
- SMB
- SMTP
- POP3

What Is a Socket?

A socket is a combination of an IP address, a transport protocol, and a port

SOMNOG5