
Understanding when to use root
The root user account exists on all Linux distributions and is the most powerful user account on the
planet. The root user account can be used to do anything within your server, and I do mean
anything. Want to create files and directories virtually anywhere on the filesystem? Want to install
software? These processes are easily performed with root. The root account can even be used to
destroy your entire installation with one typo or ill-conceived command: if you instruct root to
delete all the files on your entire hard disk, it won’t hesitate to do so. It’s always assumed on a
Linux system that if you are using root, you are doing so because you know what you are doing. So,
there’s often not so much as a confirmation prompt while executing any command as root. It will
simply do as instructed, for better or worse.

Using sudo to run privileged commands
just keep in mind that the purpose of sudo is to enable you to use your user account to do things
that normally only root would be able to do. For example, as a normal user, you cannot issue a
command such as the following to install a software package:

apt install nmap

But if you prefix the command with sudo (assuming your user account has access to it), the
command will work just fine:

sudo apt install nmap

When you use sudo, you’ll be asked for your user’s password for confirmation, and then the
command will execute. Subsequent commands prefixed with sudo may not prompt for your
password, as it will cache your password for a short period of time until it times out or the terminal
is closed. Creating and removing users Creating user using adduser When you run this command,
you will be asked a series of questions regarding how you want the user to be created. Run the
following commands to create two users:

sudo adduser user1

Then answer all questions asked and then run:

sudo adduser user2

To see all users exist on your system:

cat /etc/passwd

If you want to see the exact user you are searching:

1

cat /etc/passwd | grep user1

This will display user1 information only, thanks to pipe | and grep. Removing users Removing
access is very important when a user no longer needs to access a system, as unmanaged accounts
often become a security risk. To remove a user account, use the userdel command. To delete user2,
run:

sudo userdel user2

By default, the userdel command does not remove the contents of the user’s home directory. Here,
We can see that the files for the ‘user1’ user still exist by entering the following command:

ls -l /home

If you do actually want to remove a user’s home directory at the same time that you remove an
account, just add the -r option. This will eliminate the user and their data in one shot: First, check if
the home directory of user1 exist in /home

ls -l /home

Then attempt to remove user1 and its home directory: sudo userdel -r user1 Can you verify if the
home directory of user1 is removed as well?

ls -l /home

Switching users Create two more users on the system:

adduser ali
adduser asha

Check which user you logged in on the system(who you really are):

whoami

Do you see your user? There is another you can recognize the user you’re currently logged in by
looking at your shell prompt: Now that we have several users on our system, we need to know how
to switch between them. Of course, you can always just log in to the server as one of the users, but
you can actually switch to any user account at any time, provided you either know that user’s
password or have sudo access. The command you will use to switch from one user to another is the
su command. If you enter su with no options, it will assume that you want to switch to root and will
ask you for your root password. As we mentioned earlier, Ubuntu locks the root account by default,

2

so at this point you may not have a root password. To switch from somnog user to asha, run:

su - asha

Then provide user asha’s password. To logout, just run:

exit

Managing groups

Now that we understand how to create, manage, and switch between user accounts, we’ll need to
understand how to manage groups as well. With Linux, it’s just one-to-one ownership: just one user
and just one group assigned to each file or directory. If you list the contents of a directory on a
Linux system, you can see this for yourself:

ls -l

The following is a sample line of output from a directory on one of my servers:

-rw-r—r-- 1 root bind 490 2020-04-15 22:05 named.conf

If you were curious as to which groups exist on your server, all you would need to do is cat the
contents of the /etc/group file. Similar to the /etc/passwd file we covered earlier, the /etc/group
file contains information regarding the groups that have been created on your system. Go ahead
and take a look at this file on your system:

cat /etc/group

Creating new group

sudo groupadd sales
sudo groupadd admins

If you take a look at the /etc/group file again after adding a new group, you’ll see that a new line
was created in the file. Removing group Removing a group is just as easy. Just issue the groupdel
command followed by the name of the group you wish to remove: sudo groupdel admins If we
wanted to add a user to our admins group, we would issue the following command: sudo usermod
-aG admins myuser Setting permissions on files and directories Viewing permissions on a file:

ls -l

-rw-rw-r-- 1 somnog somnog 26 Oct 23 07:27 test

As you can see, permissions are read differently depending on their context: whether they apply to

3

a file or a directory. Changing permissions Create a new empty file:

touch file.txt

View the permissions of this file:

ls -l file.txt

-rw-rw-r-- 1 somnog somnog 0 Oct 23 16:00 file.txt

The user has read and write, and read and write permission for the group, and only read for others.
Remove read bit from others:

chmod o-r file.txt

With this example, we’re removing the r bit from other (o-r). If we wanted to add this bit instead,
we would simply use + instead of -.

chmod u+x file.txt

In addition, you can also use octal point values to manage and modify permissions. This is actually
the most common method of altering permissions. Basically, each of the permission bits (r, w, and
x) has its own octal equivalent, as follows: Read = 4 Write = 2 Execute = 1 For example to give full
permission for on file.txt:

chmod 667 file.txt

Which means: read and write for users and groups and read, write and execute for others. To give
all groups full permission:

chmod 777 file.txt

You really don’t need to do that though! Changing the ownership of files Switch to user asha:

touch newfile.txt

Check the ownership of the file:

ls -l newfile.txt

-rw-rw-r-- 1 somnog somnog 0 Oct 23 16:10 newfile.txt As you can from above command, the

4

user owner of this somnog and the group owner is somnog, the primary group of somnog user.
Let’s the user owner of this to asha (remember we created this user earlier, if not create it now with
adduser)

sudo chown user:group filename
sudo chown asha newfile.txt

Then check now:

ls -l newfile.txt

Or you can change the user and the group in one command:

sudo chown ali:sales newfile.txt

To only change the group owner you use, chgrp command:

sudo chgrp somnog newfile.txt

Managing Software Packages To update the repository:

apt update

To upgrade:

apt upgrade

To install a new package:

apt install htop

To remove this software:

apt remove htop

To remove the package and all its files:

apt purge packagename

To list installed packages on your server:

5

apt list --installed

6

	Untitled
	Understanding when to use root
	Using sudo to run privileged commands

